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Abstract
Bird’s-eye-view (BEV) grid is a typical representation of

the perception of road components, e.g., drivable area, in
autonomous driving. Most existing approaches rely on cam-
eras only to perform segmentation in BEV space, which is
fundamentally constrained by the absence of reliable depth
information. The latest works leverage both camera and Li-
DAR modalities but suboptimally fuse their features using
simple, concatenation-based mechanisms.

In this paper, we address these problems by enhancing
the alignment of the unimodal features in order to aid fea-
ture fusion, as well as enhancing the alignment between
the cameras’ perspective view (PV) and BEV representa-
tions. We propose X-Align, a novel end-to-end cross-modal
and cross-view learning framework for BEV segmentation
consisting of the following components: (i) a novel Cross-
Modal Feature Alignment (X-FA) loss, (ii) an attention-
based Cross-Modal Feature Fusion (X-FF) module to align
multi-modal BEV features implicitly, and (iii) an auxil-
iary PV segmentation branch with Cross-View Segmenta-
tion Alignment (X-SA) losses to improve the PV-to-BEV
transformation. We evaluate our proposed method across
two commonly used benchmark datasets, i.e., nuScenes and
KITTI-360. Notably, X-Align significantly outperforms the
state-of-the-art by 3 absolute mIoU points on nuScenes. We
also provide extensive ablation studies to demonstrate the
effectiveness of the individual components.

1. Introduction
Bird’s-eye-view (BEV) segmentation aims at classifying

each cell in a BEV grid around the ego position. As such,
it is a key enabler for applications like autonomous driving
and robotics. For instance, the BEV segmentation map is
a prerequisite for current works on behavior prediction and
trajectory planning [17, 50, 57]. It is also an important in-
put modality for learning end-to-end controls (e.g., speed
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Figure 1: Existing methods for cross-modal BEV segmentation
(top) utilize simple concatenation-based fusion (e.g., [34]), while
our proposed X-Align enforces cross-modal feature alignment
together with attention-based feature fusion, as well as cross-
view segmentation alignment (bottom). These contributions im-
prove both feature aggregation and PV-to-BEV transformation,
leading to more accurate BEV segmentation.

control, steering) in autonomous driving [9].
Given the ubiquity of camera sensors, existing BEV seg-

mentation methods predominantly focus on predicting BEV
segmentation maps from camera images [41, 58, 59, 67].
However, the lack of reliable 3D information significantly
limits the performance of these methods. A possible way
to resolve this challenge is to leverage a LiDAR sensor and
fuse the measured sparse geometric information with that
contained in camera images. While camera-LiDAR fusion
has been extensively studied for the task of 3D object de-
tection, such fusion strategies are relatively unexplored for
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BEV segmentation. The concurrent work of [34] provides
the first baseline using a simple concatenation of LiDAR
BEV features and camera features projected from perspec-
tive view (PV) to BEV via estimated depth and voxel pool-
ing. However, the PV-to-BEV projection can be inaccurate
due to errors in depth estimation. As a result, in the con-
catenation stage, the network may aggregate poorly aligned
features across the camera and the LiDAR branches, result-
ing in suboptimal fusion results.

In this paper, we propose a novel cross-modal, cross-
view alignment strategy, X-Align, which enforces feature
alignment across features extracted from the camera and Li-
DAR inputs as well as segmentation consistency across PV
and BEV to improve the overall BEV segmentation accu-
racy (cf. Fig. 1). First, we propose a Cross-Modal Feature
Alignment (X-FA) loss function that promotes the corre-
lation between projected camera features and LiDAR fea-
tures, as measured by cosine similarity. In addition, we in-
corporate attention to the Cross-Modal Feature Fusion (X-
FF) of these two sets of modality-specific features instead
of using simple concatenation as in [34]. This gives the
network a more substantial capability to properly align and
aggregate features from the two sensing modalities.

We further impose Cross-View Segmentation Alignment
(X-SA) losses during training. We introduce a trainable
segmentation decoder based on the intermediate PV cam-
era features to generate PV segmentation. Next, we uti-
lize the same PV-to-BEV transformation [41] that converts
PV camera features to BEV to convert the PV segmentation
map into a BEV segmentation map, which is then super-
vised by the ground truth. We also supervise the intermedi-
ate PV segmentation map using pseudo-labels generated by
a high-quality, off-the-shelf semantic segmentation model.
In this way, the camera branch learns to derive intermediate
features containing useful PV semantic features, providing
richer information for BEV segmentation after being pro-
jected to BEV space. Moreover, this provides additional
supervision on the PV-to-BEV module, allowing it to learn
a more accurate transformation.

Our main contributions are summarized as follows:

• We propose a novel framework, X-Align, that enables
better feature alignment and fusion across camera and
LiDAR modalities and enforces segmentation align-
ment across perspective view and bird’s eye view.

• Specifically, we propose a Cross-Modal Feature Align-
ment (X-FA) loss to enhance the correlation between
the camera and LiDAR features. We also devise an
attention-based Cross-Modal Feature Fusion (X-FF).

• We further propose to enforce Cross-View Segmen-
tation Alignment (X-SA) across the perspective view
and bird’s eye view, which encourages the model to
learn richer semantic features and a more accurate PV-

to-BEV projection.

• We conduct extensive experiments on the nuScenes
and KITTI-360 datasets with comprehensive ablation
studies that demonstrate the efficacy of X-Align. In
particular, on nuScenes, we surpass the state-of-the-art
in BEV segmentation by 3 absolute mIoU points.

2. Related Work
BEV Segmentation: The task of BEV segmentation has

mostly been explored using (multiple) camera images as
input. Building on top of Perspective View (PV) segmen-
tation [2–4, 18, 64, 65], early works used the homography
transformation to convert camera images to BEV, subse-
quently estimating the segmentation map [13, 35, 53, 68].
As the homography transformation introduces strong arti-
facts, subsequent works moved towards depth estimation
and voxelization [41,44] for the PV-to-BEV transformation
as end-to-end learning [36, 43]. This basic setup has been
further explored in various directions: VPN [39] explores
domain adaptation, BEVerse [66] and M2BEV [58] explore
multi-task learning with 3D object detection, CoBEVT [59]
explores fusion of features from vehicles, Gosala et al. ex-
plore panoptic BEV segmentation [15], while several works
explore incorporation of temporal context [17,46]. Further-
more, CVT [67] uses a learned map embedding and an at-
tention mechanism between map queries and camera fea-
tures. In contrast to these existing BEV segmentation ap-
proaches that only use camera images, we explore the multi-
modal fusion of LiDAR point clouds and camera images.

Multi-modal fusion for BEV segmentation has been en-
abled by recently introduced large-scale datasets providing
time-synchronized data from multiple sensors [5, 14, 48].
However, most works on these datasets focus on the 3D
object detection task [1, 10, 25, 34, 47, 62], while we focus
on BEV segmentation. The closest prior art to our work
is BEVFusion [34]. While their method also predicts BEV
segmentation based on LiDAR point clouds and camera im-
ages, they use a simple feature concatenation to fuse multi-
modal features such that the network implicitly has to con-
nect information from misaligned features. In contrast, we
explicitly enforce alignment between multi-modal features.
Also, we enforce alignment between PV and BEV segmen-
tation to improve the PV-to-BEV transformation.

Camera-LiDAR Sensor Fusion: The vast majority of
fusion methods have been proposed for the 3D object de-
tection task. Initially, two-stage approaches have been
proposed, lifting image bounding box proposals into 3D
frustum view [38, 42, 56] for fusion with LiDAR. How-
ever, research focus has shifted towards end-to-end train-
ing, where approaches can roughly be divided into three
categories: point-/input-level decoration, feature-level fu-
sion, and proposal-level fusion. Point-level fusion includes
methods such as PointAugmenting [54], PointPainting [52],
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FusionPainting [60], AutoAlign [8], and MVP [63], which
extract camera features and use these features to enrich the
point-level information, which is subsequently processed by
a LiDAR-based detector. Recently proposed FocalSparseC-
NNs [7] similarly enriches the features in the early feature
extraction stage. For proposal-level fusion usually the pre-
dicted bounding boxes are refined [28], often making use of
an attention mechanism such as in FUTR3D [6] and Trans-
Fusion [1]. However, these two fusion types have down-
sides regarding generalization. While proposal-level fusion
is not easily generalizable to other tasks, input-level decora-
tion is not generically extendable to other sensor modalities.

Feature-level fusion aims at fusing extracted features
from different sensors, subsequently predicting outputs for
one or several tasks [25–27, 34]. Our approach also falls
into this category. While [27, 34] use fusion via concate-
nation, more recent approaches apply attention-based fu-
sion [25, 26]. However, these approaches still try to im-
plicitly learn the interconnection between cross-modal fea-
tures, while we explicitly encourage alignment between fea-
tures from different modalities. Also, none of the above-
mentioned methods uses attention-based cross-modal fu-
sion for BEV segmentation or output-level segmentation
alignment of PV and BEV segmentation.

3. Proposed X-Align Framework
This section describes X-Align, our novel cross-modal

and cross-view alignment strategy. We first formally intro-
duce the problem and describe a baseline method in Sec-
tion 3.1. We provide an overview of X-Align in Section 3.2
and then discuss its components in detail, including Cross-
Modal Feature Fusion (X-FF), Cross-Modal Feature Align-
ment (X-FA), and Cross-View Segmentation Alignment (X-
SA) in Sections 3.3, 3.4, 3.5, respectively.

3.1. Problem Formulation and Baseline
Our goal is to develop a framework taking multi-modal

sensor data X as input and predicting a BEV segmentation
map m̂ ∈ SHBEV×WBEV

, with resolution HBEV ×WBEV,
and the set of classes S = {0, 1, . . . , |S|}. As illustrated in
Fig. 2, the set of inputs, X = {x, l}, contains RGB camera
images in PV, x ∈ RNcam×Hcam×W cam×3, where N cam,
Hcam, W cam denote number of cameras, image height, and
image width, respectively, as well as a LiDAR point cloud,
l ∈ RP×5, with number of points P . Each point consists of
its 3-dimensional coordinates, reflectivity, and ring index.

Baseline Method: We first establish a baseline method
of fusion-based BEV segmentation based on BEVFu-
sion [34]. As shown in Fig. 2, initial features are extracted
from both sensor inputs. For camera images, a camera en-
coder, Ecam, extracts features in PV, f cam. Subsequently,
we use a feature pyramid network (FPN) and a PV-to-BEV
transformation based on [41] to obtain camera features in

BEV space, following BEVDet [19]. For the LiDAR points,
we follow SECOND [61] in using voxelization and a sparse
LiDAR encoder, ELiDAR. The LiDAR features are pro-
jected to BEV space using a flattening operation as in [34].

These operations result in two sets of modality-specific
BEV features, f̃ cam ∈ RHlat×W lat×Ccam

and f̃LiDAR ∈
RHlat×W lat×CLiDAR

, with BEV space feature resolution
H lat × W lat and number of channels Ccam and CLiDAR

for camera and LiDAR features, respectively. The fea-
tures are then combined (e.g., by simple concatenation
as in [16, 24, 34]), resulting in fused features f̃ fused ∈
RHlat×W lat×Cfused

, which are further processed by a BEV
Encoder and FPN as in SECOND [61]. Finally, the fea-
tures are processed by a segmentation head with the same
architecture as in [34] to ensure comparability. This base-
line model is trained using the focal cross-entropy loss [31]:

LBEV = FocalCE
(
ŷBEV,yBEV

)
, (1)

where ŷBEV ∈ RHBEV×WBEV×S are class probabilities
and yBEV ∈ {0, 1}H

BEV×WBEV×S denotes the one-hot en-
coded ground truth. We can obtain the final classes m̂ by a
pixel-wise argmax operation on ŷ during inference.

3.2. X-Align Overview
Building on top of the previously described baseline, we

present our novel cross-modal and cross-view alignment
strategy, X-Align (highlighted by red boxes in Fig. 2). First,
we improve the simple concatenation-based fusion with a
Cross-Modal Feature Fusion (X-FF) module, which lever-
ages attention and mitigates misalignment between fea-
tures across modalities (Section 3.3). Secondly, we pro-
pose a Cross-Modal Feature Alignment (X-FA) loss, LX-FA,
which promotes the correlation between features across
modalities (Section 3.4). Finally, we propose losses to en-
force Cross-View Segmentation Alignment (X-SA) in Sec-
tion 3.5, where we supervise a PV segmentation predicted
from the intermediate camera features with a loss LPV and
the PV-to-BEV-projected version of this segmentation with
a loss LPV2BEV. These two losses provide more direct
training signals to the PV-to-BEV transformation and en-
courage richer semantic features in PV before the transfor-
mation. Overall, our total optimization objective is

LX-Align=λ1LBEV+λ2LX-FA+λ3LPV+λ4LPV2BEV, (2)

where λi, i ∈ {1, 2, 3, 4} are the loss weighting factors.

3.3. Cross-Modal Feature Fusion (X-FF)
In recent BEV segmentation literature [16, 24, 34], it

is a common approach to utilize concatenation followed
by convolution to combine features from multi-modal in-
puts, f̃ cam and f̃LiDAR, resulting in the aggregated fea-
tures f̃ fused. However, the lack of reliable depth informa-

3



Figure 2: Our proposed X-Align framework: We present a cross-modal and cross-view alignment algorithm for the task of BEV seg-
mentation based on camera images and LiDAR point clouds. We apply the Cross-View Segmentation Alignment (X-SA) and Cross-Modal
Feature Alignment (X-FA) losses during training. We also propose a Cross-Modal Feature Fusion (X-FF) module to correct pixel incon-
sistencies between multi-modal features. Our proposed contributions are highlighted in red. During inference, we can remove the blocks
which solely contribute to computing loss functions, suggesting that the performance enhancement comes with no added inference cost.

tion can cause inaccurate PV-to-BEV transformation of fea-
tures, which subsequently results in suboptimal alignment
and fusion of multi-modal features. The convolution blocks
utilized in existing approaches [16, 24, 34] cannot rectify
such misalignment due to their translation invariance. To
address this issue, we propose more powerful, Cross-Modal
Feature Fusion (X-FF) modules that can account for pixel-
wise misalignment, as shown in Fig. 3. Next, we describe
in detail our three proposed fusion designs.

Self-Attention: Our proposed X-FF using self-attention
is shown in Fig. 3 (left). We first stack features f̃ cam ∈
RHlat×W lat×Ccam

and f̃LiDAR ∈ RHlat×W lat×CLiDAR

, and
tokenize them into K × K patches with an embedding di-
mension of Lembed. These patches are fed into a multi-
head self-attention module [51]. The output is then pro-
jected back to the original resolution using a deconvolu-
tion block, resulting in the final fused features f̃ fused ∈
RHlat×W lat×Cfused

. By using self-attention, our proposed
module can correspond to the camera and LiDAR features
spatially, accounting for potential misalignment.

Spatial-Channel Attention: In this option, we lever-
age the recently proposed Split-Depth Transpose Attention
(SDTA) [37], as shown in Fig. 3 (middle). It first performs
spatial and channel mixing of the stacked camera and Li-
DAR features via depth-wise and point-wise convolutions.
Then, it applies channel attention followed by a lightweight
MLP. The output is passed through a deconvolution block
to generate the fused features f̃ fused. Spatial and channel

mixing together with channel attention provides powerful
capacity for the module to better address the misalignment
between the camera and LiDAR features.

Pose-Driven Deformable Convolution: This design is
illustrated in Fig. 3 (right). We know that the transforma-
tion between modalities is a function of their relative poses
to the ego vehicle. Hence, we apply an adaptive transfor-
mation, i.e., Deformable Convolution (DCNv2) [69], to the
stacked multi-modal features f̃ cam and f̃LiDAR, which can
implicitly learn the cross-modal alignment based on avail-
able pose information. More specifically, we process the
pose matrices with an MLP to generate a pose embedding
f̃pose ∈ RHlat×W lat×Cpose

, which is then concatenated
with f̃ cam and f̃LiDAR. They are used to generate K ×K
offset vectors to be used by the DCNv2 block, which pro-
duces the output fused features f̃ fused.

Our proposed X-FF designs provide the network with
the suitable capacity to properly align and fuse multi-modal
features. While they introduce additional computations,
they show more superior accuracy-efficiency trade-offs as
compared to naively increasing the complexity of the base-
line network, as we shall see in our study in Section 4.3.

3.4. Cross-Modal Feature Alignment (X-FA)
While our proposed X-FF modules can improve feature

alignment, they incur additional computations, which may
not always be feasible. As such, we propose a second mea-
sure to improve feature alignment with a Cross-Modal Fea-
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Figure 3: Our three proposed Cross-Modal Feature Fusion (X-FF) strategies, using standard self-attention (left), spatial-channel atten-
tion (middle), and pose-driven deformable convolution (right), respectively.

ture Alignment (X-FA) loss LX-FA that is only applied dur-
ing training and does not introduce additional computations
for inference. It can also be used in conjunction with X-FF.

Consider extracted features in BEV space, f̃ cam and
f̃LiDAR, from camera and LiDAR branches, respectively.
We promote the correlation between the two sets of features
by imposing a cosine similarity loss between them:

LX-FA = CosineSim
(
f̃ cam, f̃LiDAR

)
. (3)

In order to apply this loss, there are two require-
ments. First, the camera features f̃ cam and LiDAR fea-
tures f̃LiDAR in BEV space need to have the same reso-
lution. In this work, we ensure that the network parameters
are chosen accordingly. In case both features have different
resolutions, differentiable grid sampling [20] can be used.
Second, the channels Ccam and CLiDAR should match for
Eq. (3) to be applicable. This, however, is generally not
the case. As such, we take all features from the lower-
dimensional branch and enforce their similarity to several
subsets of features from the higher-dimensional branch.

3.5. Cross-View Segmentation Alignment (X-SA)
In addition to encouraging feature alignment, we also

impose alignment at the output segmentation level across
PV and BEV using our Cross-Modal Segmentation Align-
ment (X-SA) losses. More specifically, for the camera
branch, we take intermediate PV features and feed them
through an additional decoder to generate a PV segmenta-
tion prediction ŷPV ∈ RNcam×Hcam×W cam×|S| (cf. Fig. 2,
top part). We further transform ŷPV to BEV space by uti-
lizing the PV-to-BEV transformation as for the features, re-
sulting in a projected BEV segmentation map ŷPV→BEV ∈
RHBEV×WBEV×|S|. The projected BEV segmentation map
is supervised w.r.t ground-truth BEV segmentation using a
focal cross-entropy loss:

LPV2BEV = FocalCE
(
ŷPV→BEV,yBEV

)
. (4)

As for the PV segmentation, since PV ground truth is not
always available on BEV perception datasets, we supervise
it with a focal loss using pseudo-labels generated by a state-
of-the-art model pretrained on Cityscapes [12], as follows:

LPV = FocalCE
(
ŷPV,yPV

)
, (5)

By introducing these two additional supervisions, we en-
force that across PV and BEV, the segmentations are ac-
curate and aligned through the PV-to-BEV transformation.
This benefit is two-fold: First, the module used here is
given by the same PV-to-BEV transformation as on the fea-
ture level in the main camera branch. Our X-SA loss pro-
vides additional supervision to more accurately train this
key module. Second, imposing a PV segmentation loss LPV

encourages the network to learn useful PV semantic fea-
tures, providing richer semantic information for the down-
stream BEV features. Our X-SA components, including
the additional decoder and the losses, are only used during
training and do not require overhead at test time.

In summary, our complete X-Align framework X-
Alignall proposes four additions to the baseline: the X-FF
feature fusion module, along with three additional training
losses: LX-FA, LPV, and LPV2BEV. In cases where the
network only takes camera inputs, we apply the two X-SA
losses, LPV and LPV2BEV, giving us the X-Alignview vari-
ant. In addition, in case extra computation is not allowed,
we apply all three X-Align losses when training the net-
work, forming the X-Alignlosses variant. We extensively
evaluate these variants as well as combinations of our pro-
posed X-Align components in Section 4.3.

4. Experiments
In this section, we present comprehensive performance

evaluations of X-Align and compare it with baselines and
the current state of the art. We further conduct extensive ab-
lation studies on various aspects of our proposed approach.
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Model Backbone Modality Drivable Ped. Cross. Walkway Stop Line Carpark Divider mIoU

OFT [44] ResNet-18 C 74.0 35.3 45.9 27.5 35.9 33.9 42.1
LSS [41] ResNet-18 C 75.4 38.8 46.3 30.3 39.1 36.5 44.4
CVT [67] EfficientNet-B4 C 74.3 36.8 39.9 25.8 35.0 29.4 40.2
M2BEV [58] ResNeXt-101 C 77.2 ✗ ✗ ✗ ✗ 40.5 ✗

BEVFusion [34] Swin-T C 81.7 54.8 58.4 47.4 50.7 46.4 56.6
X-Alignview Swin-T C 82.4 55.6 59.3 49.6 53.8 47.4 58.0

PointPillars [22] VoxelNet L 72.0 43.1 53.1 29.7 27.7 37.5 43.8
CenterPoint [62] VoxelNet L 75.6 48.4 57.5 36.5 31.7 41.9 48.6

PointPainting [52] ResNet-101, PointPillars C + L 75.9 48.5 57.1 36.9 34.5 41.9 49.1
MVP [63] ResNet-101, VoxelNet C + L 76.1 48.7 57.0 36.9 33.0 42.2 49.0
BEVFusion [34] Swin-T, VoxelNet C + L 85.5 60.5 67.6 52.0 57.0 53.7 62.7
X-Alignlosses Swin-T, VoxelNet C + L 85.8 63.1 68.6 53.6 57.9 56.7 64.3
X-Alignall Swin-T, VoxelNet C + L 86.8 65.2 70.0 58.3 57.1 58.2 65.7

Table 1: Quantitative evaluation on the nuScenes validation set, in terms of single-class IoUs and the overall mIoU. We compare with
existing methods from literature, where the numbers are taken from [34], as their reproduced results are better than the ones originally
reported in the papers due to a higher number of trained classes. We also provide information on the backbones and input modalities in the
table. Our proposed X-Align outperforms all existing approaches in both single-class IoUs and the overall mIoU by a significant margin.

Model Encoder Modality mIoU PQ

PanopticBEV [15] EffDet-D3 C 25.4 16.0
X-Alignview EffDet-D3 C 27.8 16.9

Table 2: Quantitative evaluation on KITTI-360 in terms of
mIoU and PQ, using the camera-only modality.

4.1. Experimental Setup
Datasets: We evaluate performance on the large-scale

nuScenes benchmark [5], which provides ground-truth an-
notations to support BEV segmentation. It contains 40,000
annotated keyframes captured by a 32-beam LiDAR scan-
ner and six monocular cameras providing a 360◦ field
of view. Following the BEV map segmentation setup
from [34], we predict six semantic classes: drivable lanes,
pedestrian crossings, walkways, stop lines, carparks, and
lane dividers. We further evaluate on KITTI-360 [29], a
large-scale dataset with 83,000 annotated frames, including
data collected using two fish-eye cameras and a perspective
stereo camera. KITTI-360 does not provide dense ground-
truth annotations for BEV segmentation. Hence, we use the
BEV segmentation annotations from [15] as ground truth.
These contain both static classes such as road and sidewalk,
along with dynamic objects such as cars and trucks.

Evaluation Metrics: For BEV map segmentation, our
primary evaluation metric is the mean Intersection Over
Union (mIoU). Because some classes may overlap, we ap-
ply binary segmentation separately to each class and choose
the highest IoU over different thresholds. We then take the
mean over all semantic classes to produce the mIoU. This
evaluation protocol was proposed in [34]. We additionally
use Panoptic Quality (PQ) [21] on KITTI-360 when evalu-
ating panoptic BEV segmentation.

Network Architecture and Training: For evaluation on

nuScenes, we build upon BEVFusion [34] for the baseline
and train our networks within mmdetection3d [11]. In the
camera branch, images are downsampled to 256×704 be-
fore going into a Swin-T [32] or ConvNeXt [33] backbone
pretrained on ImageNet [45]. The extracted features are fed
into several FPN [30] layers and then through a PV-to-BEV
transformation based on LSS [41] to be mapped into the
BEV space. In the LiDAR branch, we voxelize the points
with a grid size of 0.1m and use a sparse convolution back-
bone [61] to extract the features, which are then flattened
onto the BEV space. Given the camera and LiDAR features
in BEV space, we utilize our proposed X-FF mechanism
from Section 3.3 to fuse them. We use the self-attention
module in our main results, providing the best accuracy-
computation trade-off (see Fig. 4). The fused features are
fed into a BEV encoder and FPN layers similar to those
in SECOND [61] and subsequently to a segmentation head
as in BEVFusion [34]. Since nuScenes does not provide
ground-truth PV segmentation labels, we utilize a SOTA
model pre-trained on Cityscapes to generate pseudo-labels
for supervising our PV segmentation in X-SA. Specifically,
we use an HRNet-w48 [55] trained with InverseForm [4].

On KITTI-360, we take the camera-only Panop-
ticBEV [15] as the baseline, which we retrain using the code
and hyperparameters released by the authors. Then, we in-
clude our two proposed X-SA losses on top of this baseline
to generate the X-Alignview results on KITTI-360.

Additional hyperparameters and training details for all
experiments can be found in the Appendix.

4.2. Quantitative Evaluation
nuScenes Camera-LiDAR Fusion: We report segmen-

tation results based on camera-LiDAR fusion in the bottom
section of Table 1. We evaluate in the region-bound of [-
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Model PV X-FA PV2BEV X-FF Drivable Ped. Cross. Walkway Stop Line Carpark Divider mIoU GFlops fps

Baseline ✗ ✗ ✗ ✗ 85.5 60.5 67.6 52.0 57.0 53.7 62.7 364.3 5.1
✓ ✗ ✗ ✗ 85.7 62.8 68.4 52.4 56.5 56.1 63.7 364.3 5.1
✗ ✓ ✗ ✗ 85.6 62.3 68.2 51.6 56.4 55.9 63.4 364.3 5.1

X-Alignview ✓ ✗ ✓ ✗ 85.8 63.1 68.6 53.2 57.7 56.4 64.1 364.3 5.1
X-Alignlosses ✓ ✓ ✓ ✗ 85.8 63.1 68.6 53.6 57.9 56.7 64.3 364.3 5.1

✗ ✗ ✗ ✓ 86.8 64.3 69.5 54.5 59.5 57.6 65.3 367.4 5.0
✗ ✓ ✗ ✓ 86.8 65.1 69.8 60.0 56.5 58.2 65.4 367.4 5.0
✓ ✗ ✓ ✓ 86.8 65.0 70.0 55.9 57.0 58.1 65.5 367.4 5.0

X-Alignall ✓ ✓ ✓ ✓ 86.8 65.2 70.0 58.3 57.1 58.2 65.7 367.4 5.0

Table 3: Ablation study on the proposed X-Align components. In the top part, we show the effects of our proposed losses, i.e., the Cross-
Modal Feature Alignment (X-FA) loss and Cross-View Segmentation Alignment (X-SA) comprised of the PV and PV2BEV segmentation
losses. In the bottom part, we further show the improvements enabled by our Cross-Modal Feature Fusion (X-FF).

50m, 50m]×[-50m, 50m] around the ego car following the
standard evluation procedure on nuScenes [26, 34, 41, 58,
67]. We compare our complete method X-Alignall with ex-
isting SOTA approaches on BEV segmentation and see that
X-Align significantly outperforms them. Specifically, X-
Align achieves a new record mIoU of 65.7% on nuScenes
BEV segmentation and consistently improves across all
the classes, thanks to the proposed novel cross-modal and
cross-view alignment strategies. We used the Self-Attention
block illustrated in Figure 3 as our preferred X-FF strategy,
as it provided the optimal trade-off in Figure 4. For this
strategy, the computational overhead (0.8%) and increase
in latency (2%) is minimal as observed in Table 1. We
further show the performance of X-Align but without us-
ing the more advanced fusion module, i.e., X-Alignlosses, in
the second last row of Table 1. X-Align still significantly
outperforms existing methods even without introducing ad-
ditional computational complexity during inference.

nuScenes Camera-Only: To demonstrate the efficacy of
our X-SA scheme, we evaluate an instance of X-Align, i.e.,
X-Alignview, using only the camera branch for BEV map
segmentation. The results and comparisons are shown in the
top part of Table 1. It can be seen that X-Alignview consid-
erably outperforms the existing best performance, achieving
a record mIoU of 58.0%, surpassing the prior camera-only
SOTA by 1.4 points in mIoU. This shows the benefit of X-
SA, which enhances the intermediate semantic features and
the PV-to-BEV transformation without incurring computa-
tional overhead at inference.

KITTI-360 Camera-Only: We present additional
camera-only results on KITTI-360 in Table 2, for the task
of panoptic BEV segmentation. In this case, we use Panop-
ticBEV [15] as our baseline. Additionally, we include our
two novel X-SA losses to train our X-Alignview model.1 It
can be seen that our proposed approach improves the base-
line in terms of both mIoU and PQ scores.

Overall, our proposed X-Align consistently improves
upon the existing methods across modalities and classes on

1The baseline scores are obtained by training PanopticBEV using the
authors’ code in https://github.com/robot-learning-freiburg/PanopticBEV.

Figure 4: Accuracy-Computation Analysis: We compare our
proposed Cross-Modal Feature Fusion (X-FF) designs with sim-
ply scaling up the fusion mechanism (adopted by existing meth-
ods [24, 34]) in terms of accuracy and computation complexity.

both nuScenes and KITTI-360, demonstrating the efficacy
of our proposed X-FF, X-FA, and X-SA components.

4.3. Ablation Study
We conduct an ablation study on the different X-Align

components and summarize our results in Table 3. We eval-
uate model variants using different combinations of our pro-
posed novel losses, including Cross-Modal Feature Align-
ment (X-FA) loss and our Cross-View Segmentation Align-
ment (X-SA) comprised of our PV and PV2BEV losses.
Additionally, we investigate the effect of our Cross-Modal
Feature Fusion (X-FF).

Our X-Alignview variant, leveraging both PV and
PV2BEV losses, improves the mIoU from 62.7% to 64.1%
when compared to the baseline. Specifically, the PV loss
alone contributes to a 1-point mIoU improvement. When
using the X-FA loss, we increase the baseline mIoU from
62.7% to 63.4%. Finally, adding all the losses together,
our X-Alignlosses variant boosts the mIoU score to 64.3%,
significantly surpassing the baseline’s mIoU. Notably, these
improvements rely on new training losses and have no com-
putational overhead during inference.

Next, we study the effect of our X-FF module. Without
any new losses, X-FF enables a 2.6-point mIoU improve-
ment over the baseline (with a minor increase of computa-
tion, cf. Table 3 and Fig. 4). This shows that simple concate-
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Figure 5: Qualitative results on nuScenes. We present a sample scene from nuScenes: a) six camera inputs, b) LiDAR scan, c) ground-
truth BEV segmentation map, d) baseline BEV segmentation, e) BEV segmentation using X-Alignview, and d) BEV segmentation X-
Alignall. We observe that the baseline model prediction is highly erroneous in the region highlighted in green. We highlight this region
of interest in the input views as well. By using the two X-SA losses, X-Alignview can already correct substantial errors in the baseline
prediction, and the X-Alignall model further improves accuracy.

nation is a key limitation in the baseline, which fails to fuse
the camera and LiDAR features properly. Finally, using all
our novel loss functions together with the X-FF module, we
arrive at the full X-Alignall model, which achieves the over-
all best performance of 65.7% mIoU, significantly higher
than the baseline’s 62.7% mIoU. Our extensive ablation
study results show that each of our proposed components in
X-Align provides a meaningful contribution to improving
the SOTA BEV segmentation performance.

4.4. Accuracy-Computation Analysis
In Fig. 4, we report the accuracy-computation trade-off

by utilizing our different X-FF fusion strategies, including
self-attention, spatial-channel attention, and pose-driven de-
formable convolution (DCNv2). It can be seen that when
using spatial-channel attention, we achieve the highest ac-
curacy improvement at a higher computational cost, while
pose-driven DCNv2 introduces the least amount of addi-
tional cost but provides less performance gain. Using self-
attention, on the other hand, provides the best trade-off be-
tween performance and complexity.

We further compare by naively scaling up the complexity
of the baseline fusion, e.g., by adding more layers and chan-
nels in the convolution blocks, shown by the blue curve. It
can be seen that the baseline’s performance saturates, and
all our proposed fusion methods achieve better trade-offs
as compared to the baseline. This again verifies that the
baseline fusion using simple concatenation and convolu-
tions does not provide the suitable capacity for the model
to align and aggregate multi-modal features.

4.5. Qualitative Results
In Fig. 5, we present qualitative results on a sample test

scene from nuScenes, showing both LiDAR and camera in-

puts. We compare the BEV segmentation maps of different
models, including the baseline, X-Alignview (only using the
two X-SA losses), and the full X-Align, i.e., X-Alignall.

In this scene, the baseline wrongly predicts the building
in the NW image as part of a road in the BEV segmenta-
tion output due to the inaccurate PV-to-BEV transforma-
tion, cf. Fig. 5(d). Since the building is not captured in the
LiDAR scan (see Fig. 5(b)), the LiDAR branch also cannot
correct the camera projection later in the fusion. However,
by utilizing our Cross-View Segmentation Alignment (X-
SA), this erroneous projection can be largely rectified, as
shown in Fig. 5(e). The remnants of this error are then com-
pletely removed when we apply our proposed alignment and
fusion schemes, X-FA and X-FF, which enables proper fu-
sion of the visual information from the camera and the geo-
metric information from the LiDAR. We can see in Fig. 5(f)
that our full X-Align Model can accurately predict the BEV
segmentation map. We refer readers to the Appendix for
more visual examples.

5. Conclusions
In this paper, we proposed a novel framework, X-Align,

which addresses cross-view and cross-modal alignment in
BEV segmentation. It enhances the alignment of unimodal
features to aid feature fusion and the alignment between
perspective view and bird’s-eye-view representations. Our
experiments show that X-Align improves performance on
nuScenes and KITTI-360 datasets, in particular outperform-
ing previous SOTA by 3 mIoU points on nuScenes. We also
verified the effectiveness of the X-Align components via an
extensive ablation study. As part of future work, we believe
that X-Align can further benefit other multi-modal percep-
tion tasks.
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Appendices
A. Introduction

As part of the supplementary materials for this paper, we present our hyper-parameters and show more visual and quanti-
tative results as an extension to the ones shown in the paper. The supplementary materials contain:

• An ablation study analyzing the performance of X-Align on various backbones.

• An ablation study to measure the adaptability of X-Align to camera noise.

• An ablation study to measure the impact of X-Align on different driving conditions and its adaptability to noise.

• Implementation details and training hyper-parameters for all our experiments.

• Qualitative results on nuScenes as an addition to the example shown in Figure 5 of the paper, and visual comparison
with the baseline network.

B. Varying Backbones

Model Encoder Modality mIoU

BEVFusion [34] Swin-T Camera, LiDAR 62.7
X-Alignview Swin-T Camera, LiDAR 64.1
BEVFusion ConvneXt-T Camera, LiDAR 62.1
X-Alignview ConvneXt-T Camera, LiDAR 63.8
BEVFusion ConvneXt-S Camera, LiDAR 63.9
X-Alignview ConvneXt-S Camera, LiDAR 64.7

Table B.1: Quantitative evaluation on nuScenes in terms of mIoU, varying the camera encoder.

To verify the generalizability of our X-Align method, we present results for three different encoders, i.e., SWin-T,
ConvneXt-T, and ConvneXt-S, in Table B.1. For this ablation study, we choose our X-Alignview variant because this shows
that a given model can be improved without adding additional computational complexity during inference. Compared to the
current state-of-the-art result from BEVFusion [34], we can improve their result from 62.7 to 64.1 in terms of mIoU. Similar
improvements can be observed for our additionally investigated backbones ConvneXt-T and ConvneXt-S. These results show
that our method generalizes well to different backbones without hyperparameter tuning.

C. Adaptability to Noise

Model Encoder Modality σ = 0.0 σ = 0.05 σ = 0.075 σ = 0.1

BEVFusion [34] Swin-T Camera 56.6 52.7 47.2 40.7
X-Alignview Swin-T Camera 58.0 55.2 51.4 45.6
BEVFusion [34] Swin-T Camera, Lidar 62.7 59.2 54.8 48.9
X-Alignview Swin-T Camera, Lidar 64.1 62.1 58.3 54.1
X-Alignall Swin-T Camera, Lidar 65.7 64.3 62.6 59.6

Table C.1: Quantitative evaluation on nuScenes, adding gaussian noise to the input images. We observe that X-Align
methods provide more consistent results as they are lesser variant to noise.

Another interesting property of deep neural network-based methods is their susceptibility to input perturbations because
it gives insights into their robustness in real environments. Therefore, we add Gaussian noise to the input camera images and
observe how the performance degrades in Table C.1. The noise is zero-mean normalized, and σ in Table C.1 is the standard
deviation of the Gaussian noise. From the table, we can deduce two main observations: First, the performance of X-Align
methods under input perturbations is relatively stable compared to the baseline. We attribute this to the fact that the input
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camera noise will make the extracted camera feature less reliable. Due to our robust attention-based cross-modal feature
fusion (X-FF), the method can still correct the camera features using LiDAR predictions. Our second interesting observation
concerns the comparison to the baseline BEVFusion. We observe that our performance loss at a higher noise-variance is
much smaller than for BEVFusion, e.g., the performance of our method X-Alignall at σ = 0.1 drops from 65.7 to 59.6. In
contrast, BEVFusion drops from 62.7 to 48.9. This shows superior properties of our method in terms of robustness.

D. Adverse Weather Conditions

Model Encoder Modality nuScenes-Night nuScenes-Rain nuScenes

BEVFusion [34] Swin-T Camera 30.8 50.5 56.6
X-Alignview Swin-T Camera 33.1 51.1 58.0
BEVFusion [34] Swin-T Camera, LiDAR 43.6 55.9 62.7
X-Alignview Swin-T Camera, LiDAR 44.5 56.3 64.3
X-Alignall Swin-T Camera, LiDAR 46.1 57.8 65.7

Table D.1: Quantitative evaluation on nuScenes-rainy and nuScenes-night. We observe that X-Align provides consistent
improvements in adverse weather conditions.

To further investigate our method’s robustness, we show results of how our method performs in adverse weather condi-
tions in Table D.1. For this experiment, we use the metadata provided by nuScenes, which indicates the weather and light
conditions of the recorded scene. With this information, we filter the validation set to obtain two splits containing all images
recorded at night and all images recorded during rainy conditions. Our results show consistent improvement in these adverse
conditions by X-Alignview as well as X-Alignall. This shows that our method improves on comparably easy samples and
difficult ones, which is an important property for future deployment of our method.

E. Training Details and Hyperparameter Analysis
In this subsection, we provide the hyper-parameters and training details for all our experiments in the paper. All our

models are trained using Pytorch [40] on 4 Nvidia Tesla A100 GPUs.
nuScenes experiments: To reproduce the BEVFusion [34] baseline model, we adapt the code provided by their authors2

into the mmdetection3d [11] framework. This is because they do not provide training code in the current version. In the
camera pipeline, the images are downsampled into a size of 256 × 704 before being passed through a Swin-T [32] or
ConvNext [33] backbone pretrained on ImageNet [45]. The intermediate features extracted from the camera are passed
through a set of FPN [30] layers to retain the salient low-level encoder features. These are then passed to View-Transformers
based on LSS [41]. The baseline is trained using their reported hyper-parameters [34], with a learning schedule of 20 epochs
and a cyclic learning rate, starting for 1e−4 and performing a single cycle with target ratios {10, 1e−4} and a step of 0.4. For
our experiments, we implement our proposed blocks:

• X-FF Modules: For the X-FF modules described in Section 3.3 of the paper, we switch the naive convolutional fuser
in the baseline model. To implement the Self-Attention fuser, we tokenize the inputs into patches of size 3 × 3 and a
stride of 2. This step is followed by a Multi-Head-Self-Attention block as described in [51], containing 8 heads and an
embedding dimension of 256. To implement the Spatial-Channel Attention module, we use the Split-depth Transpose
Attention (SDTA) block from EdgeNext [37].We use an embedding dimension of 256, 2 scales, and 8 heads. We also
use DropPath [23] of 0.1. A deconvolution block follows the SDTA fusion module to output 256 channels and the fused
feature resolution. Finally, to implement the pose-driven deformable convolutional operation, we pass the input pose
through a 2-layer MLP network, whose output can is interpolated to the feature size. This pose channel is concatenated
with the two input modalities, then passes through a convolutional block to obtain 18 offset channels, input into a
DCNv2 [69] block of kernel size 3× 3 The output of the DCNv2 block is our fused feature dimension.

• X-FA Loss: As explained in Section 3.4 of the paper, we use cosine similarity as a loss function to model the X-FA
similarity. Using a sparse hyper-parameter search, we set the best value of γ2 in Equation (2) of the main paper as
−0.002. We reduce its negative value because we want to increase the cosine similarity.

2https://github.com/mit-han-lab/bevfusion
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• X-SA Module: As explained in Section 3.5 of the paper, we utilize a perspective decoder to generate 2D perspective
view semantic labels. The decoder has two Convolution-BN2D-ReLU sequences with a hidden dimension of 256
channels, generating semantic probabilities at the output. As nuScenes [5] does not contain ground truth segmentation
labels; we make use of a state-of-the-art (SOTA) model pre-trained on Cityscapes to generate pseudo labels yPV. This is
an HRNet-w48 [55] checkpoint, trained with the InverseForm [4] loss, as made public by the authors in their codebase.3

We pick γ3 in Equation (2) of the main paper as 0.1 following a sparse hyper-parameter search. Once we have the 2D
perspective features, we share parameters with the LSS Transform from earlier to splat the probability maps to BEV
space. We use convolution blocks for channel aggregation at the input and output and interpolate to equalize dimensions.
The output is then supervised with BEV GT as shown in Figure 3 of the paper. The loss weight γ4 is tuned to 0.1 by
observing the total loss value and setting the weight to produce ∼20% of the total loss.

KITTI360 experiments: To reproduce the PanopticBEV [15] scores, we use the code made public by the authors and their
default settings.4 The model consists of an EfficientDet-d3 [49] camera encoder, which encodes multi-resolution features.
Next, a multi-scale transformer converts the perspective view to BEV features. This is followed by decoders for both instance
and semantics. Finally, their outputs are combined to generate panoptic predictions. The baseline uploaded by the authors
reaches a lower value than what was obtained in their paper. For our experiments with the X-SA module, we added a 2D
Perspective decoder to the multi-scale encoded features to predict semantic labels in the perspective view. As KITTI360
contains 2d semantic labels, we use them to supervise this decoder. Then, we reuse the view transformer to map predictions
to BEV space. We supervise our X-SA branch with loss weights γ3 set at 0.5 and γ4 set at 0.1, adding them to the total loss
of the PanopticBEV baseline.

F. Qualitative Analysis
In this Section, we present more sample scenes from nuScenes, as an extension to the one shown in Figure 5 of the main

paper. Each scene consists of 5 parts: a) six surround camera inputs b) LiDAR scan, c) ground-truth BEV segmentation
map, d) baseline BEV segmentation, e) BEV segmentation using X-Alignview, and d) BEV segmentation X-Alignall. For
each scenario, we observe that the baseline model prediction is highly erroneous in the region highlighted in green. We
highlight this region of interest in the input views as well. By using our proposed X-SA losses, X-Alignview can already
correct substantial errors in the baseline prediction, and the X-Alignall model further improves accuracy.

Figure F.1: Scenario 1 on nuScenes: We present a scene where multiple road occlusions are apparent in the N and NW camera images,
which were caused by pedestrians. The baseline model fails to fill in the gaps properly through the LiDAR-camera fusion, producing an
entangled segmentation representation of the intersecting roads. Using the two X-SA losses, X-Alignview improves the segmentation map’s
prediction. By adding all the components, X-Alignall can address the occlusions and produce a more refined semantic representation of the
scene.

3https://github.com/Qualcomm-AI-research/InverseForm
4https://github.com/robot-learning-freiburg/PanopticBEV
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Figure F.2: Scenario 2 on nuScenes: In this scene from nuScenes, the road boundaries in the north west direction of the vehicle appear
vague in the LiDAR point cloud’s green box area. However, in the N and NW camera images, they are apparent. The baseline model’s
boundary prediction is faulty due to misaligned camera features. Using the two X-SA losses, X-Alignview rectifies some of the camera
features. By adding all the components, X-Alignall can predict a map where the road boundaries are properly segmented.

Figure F.3: Scenario 3 on nuScenes: We present a scene where patterned occlusions like fences are evident in the N and NW camera
images. Due to these repetitive occlusions, the baseline model has difficulty producing a clear segmentation map of the intersection.
By using the two X-SA losses, X-Alignview can extract more BEV-segmentation-oriented features from the images. By adding all the
components, X-Alignall can properly rectify the camera’s incomplete view of the road and align it properly with the LiDAR’s features,
producing a clear segmentation map of the road as shown in (f).
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Figure F.4: Scenario 4 on nuScenes: We present a scene from nuScenes, where the back intersection is dimly lighted with slightly occluded
road boundaries, as shown in the S camera image. The LiDAR point cloud input lacks salient features capturing the road boundaries. We
show the baseline’s erroneous boundary prediction due to their simple concatenation-based fusion between the two modalities. We also
show that by using two X-SA losses, X-Alignview can have a more accurate prediction of the road boundaries, and by additionally using
X-FF and X-FA, X-Alignall can output an accurate segmentation map of the intersection.

16


	1 . Introduction
	2 . Related Work
	3 . Proposed X-Align Framework
	3.1 . Problem Formulation and Baseline
	3.2 . X-Align Overview
	3.3 . Cross-Modal Feature Fusion (X-FF)
	3.4 . Cross-Modal Feature Alignment (X-FA)
	3.5 . Cross-View Segmentation Alignment (X-SA)

	4 . Experiments
	4.1 . Experimental Setup
	4.2 . Quantitative Evaluation
	4.3 . Ablation Study
	4.4 . Accuracy-Computation Analysis
	4.5 . Qualitative Results

	5 . Conclusions
	A . Introduction
	B . Varying Backbones
	C . Adaptability to Noise
	D . Adverse Weather Conditions
	E . Training Details and Hyperparameter Analysis
	F . Qualitative Analysis

